Research and Scholarly Development Grant Program Awardees

The Research and Scholarly Development Grant (RSDG) Program has been created to provide tenure and non-tenure track faculty with funding of up to $25,000 to help build their research and scholarly careers. RSDG grants are intended to stimulate interactions across disciplines, departments, colleges, and programs. The funding is designed to facilitate preliminary data collection or planning efforts to assist in the development of competitive proposals that will attract external funding.  Each RSDG proposal is required to demonstrate how funding for the project will lead directly to external funding requests. This USA internally-funded competition is sponsored by the Office of Research and Economic Development. Proposals are reviewed by faculty from Schools and Colleges across campus in three-member review panels. Review assignments are made to minimize conflict of interest and equalize the distribution of applications from each School/College.

2017 Awardees


Dr. Ylenia Chiari on the beach

Dr. Ylenia Chiari
Assistant Professor, Department of Biology
College of Arts and Sciences

"Are looks really everything? Investigating body color pattern as a measure of individual success in animals."

Abstract: Individual fitness is a key concept in biology. Individuals that can survive better and reproduce more (individual fitness) will ensure their success and consequently the continuation of the species. In this context, the capacity of an organism to recognize and escape predators and recognize suitable mates (same species, males versus females) is essential for achieving high individual fitness. Individual recognition – the capacity of an organism to discriminate between individuals of the same species from those of a different species and among individuals of different sex – is therefore critical to ensure survival and success in animals and has been identified as a key step in the maintenance and formation of new species. Despite the significance of individual recognition, data indicating which animals are capable of distinguishing among individuals of the same versus different species or sex, how the recognition is achieved (visual, scent, acoustic), and the relationship between recognition and increased survival or reproduction, are still limited to a few representative species. In the proposed project, we will study the key components of how individual recognition through visual cues is achieved in a group of reptiles. First, we will test the ability of the animal to visually distinguish individual of the same or different species and same or different sex. Then we will analyze which visual clues (alone and in combination) - body color, color pattern, body size, and movements of the animal – are essential for the individual recognition. We will use a multidisciplinary approach (morphological and behavioral data and mathematical models) and live animals as well as video-manipulation and video-animation. We will interpret the results obtained in the context of cognitive abilities of the studies species and individual success. Our results will provide preliminary data to apply for funding to study: 1) how species are generated and maintained (NSF, HFSP funding), 2) how color and color pattern is obtained in vertebrates and the relationship between dysfunction in melanin based coloration and cancer (NSF, NIH), 3) the relationship between brain characteristics and individual recognition capacities (NSF, HFSP, NIH).


Dr. Phil Menard

Dr. Phil Menard
Assistant Professor, Department of Information Systems and Technology
School of Computing

"Improving Smart Home Security Through Targeted Training on Internet of Things (IoT)"

Abstract: The emergence of the Internet of Things (IoT) has marked an importance change in computing by utilizing modern telecommunications, thus making normal devices that were not previously networked “smart.” The market for smart home appliances alone is projected to reach $26 billion by 2019. Many IoT developers are rushing devices to production to capitalize on the growing market, with device security lacking as a result. IoT security weaknesses are the byproduct of allowing remote management and communication between devices. The number of potential vulnerabilities of Internet-enabled devices will grow exponentially as unsecure IoT device continue to be adopted by consumers, resulting in consumers likely being targeted more often by hackers. Vulnerability detection and user education together are paramount in mitigating this growing problem. I am proposing the development of a network analysis tool that scans the network, identifies devices, and provides specific security recommendations. My proposed tool will automate various penetration testing techniques and report the severity of each device’s vulnerabilities. I also propose the development of a scoring algorithm that quantifies the strength of a network’s security (scored from 0 to 100), based on the number of devices on the network and the severity of their vulnerabilities. Targeted recommendations and training modules are provided to the user for strengthening the network. This proposal will significantly contribute to security research by developing a tool that targets a growing threat vector. By mitigating the ability to compromise networks and propagate malware in the short term, my proposed tool ultimately contributes to the long-term security goal of realizing safer computing environment for everyone. If funded, I will use the award to build and test a prototype network analysis and training tool, along with a small test lab of IoT devices and mobile devices (both iOS and Android based). The results of the research will contribute to a submission to the NSF Secure and Trustworthy Cyberspace (SaTC) RFP. The IoT lab will also be beneficial to students currently enrolled in USA’s School of Computing.


Dr. Carlos Montalvo

Dr. Carlos Montalvo
Assistant Professor, Department of Mechanical Engineering
College of Engineering

"Investigating Sea Breeze Structure and Convective Initiation Using Unmanned Aerial Systems (UASs)"

Abstract: The recent reduced cost and technological advances in Unmanned Aerial Vehicles (UAVs) has brought about an explosion of applications in atmospheric observations. Compact, lightweight atmospheric sensors have been developed for UAVs. Many questions remain regarding this new technology including 1) optimal sensor placement on the UAV; 2) sensor data validation; and 3) development of sensors to measure wind speed and direction from vertical take off and landing aircraft. These 3 questions will be addressed in this collaborative RSDG project with the goal to gather preliminary data that will be used to write two competitive proposals to the National Science Foundation (NSF). One will be submitted to the Physical and Dynamic Meteorology program of the NSF Division of Atmospheric and Geospace Sciences to study thunderstorm formation in Mobile area sea breezes using UAV observations. Two previous submissions have been declined for funding. Based on reviewer comments, preliminary data will be helpful in drafting a more competitive proposal. Another proposal will be submitted to the National Robotics Initiative which seeks to accelerate the development and use of robots in the US and will study optical sensor placement, wind sensor development and integration of UAVs into standard weather modeling. The proposed RSDG project is a collaboration between 3 departments: Earth Sciences (ES), Mathematics and Statistics (MS), and Mechanical Engineering (ME). Dr. Kimball (ES) has expertise in atmospheric sensors and data analysis, Dr. Carlos Montalvo (ME) is an expert in UAV technology, and Dr. Madhuri Mulekar (MS) will perform statistical analysis. At least 2 UAVs will be flown on a weekly basis in different weather conditions to gather data to address the above research questions. The UAVs will carry several atmospheric sensors each. Dr. Montalvo will analyze data obtained to determine optimal sensor placement and feasibility of measuring wind speed. UAVs will be flown alongside a 10 m tower with research-grade atmospheric sensors. Data from UAV-based sensors will be compared to tower measurements. Preliminary vertical soundings up to 112 m in altitude in mature sea breezes will be undertaken. Undergraduate and graduate students will assist with all parts of this research project.


Dr. Matthew Reichert

Dr. Matthew Reichert
Associate Professor, Chemistry Department
College of Arts and Sciences

"Novel 3D Printing Technology Utilizing Ionic Liquids"

Abstract: Additive manufacturing, more commonly known as 3-D printing, is an emerging field with many research opportunities. Currently additive manufacturing techniques use petroleum-based polymers. In an effort to reduce our dependence on petroleum products and maintain our demand for polymer based products, new renewable and sustainable polymers are needed. One of the main prospects for replacement of petroleum based polymers are biopolymers, such as cellulose. One area that has been neglected is the 3-D printing of biopolymers. This neglect is mainly due to the difficultly in producing consistent printable medium using these unique polymers. Ionic liquids have the potential to remove this hurdle and impact various areas of research in the 3-D printing field. One of those areas is the ability to 3-D print biopolymers such as cellulose and chitin. Ionic liquids can dissolve various biopolymers, including cellulose and chitin. This ability can allow for the replacement of petroleum-based polymers in 3-D printing with biorenewable, biocompatible, and recyclable polymers. A neglected area of 3-D printing technology is the incorporation of additives such as plasticizers into the printed objects. Current polymer additives are volatile and leech out of the polymer leading to “new car" smell. Ionic liquids usually do not evaporate and therefore remain in the plastics giving the plastic better durability and flexibility. The incorporation of ionic liquids as additives to current stereolithography (SLA) and digital light processing (DLP) printing methods could have a large impact on 3-D printing technology. As additives to the resin bath, ionic liquids can also have an impact on SLA and DLP 3-D printing. Ionic liquids have the advantage of being able to carry various functionalities, such as flame resistance, within their structure. By incorporating functionalized ionic liquids into the resin bath, the final 3-D printed object will have these ionic liquids embedded in their structure. The final product will not only be a high-detailed object, but it will also possess the chemical functionality of the embedded ionic liquid. The incorporation of ionic liquids into current additive manufacturing technologies can have a considerable environmental benefit as well as an increase in consumer safety and product lifetimes.


Dr. Wito Richter

Dr. Wito Richter
Assistant Professor, Department of Biochemistry and Molecular Biology
College of Medicine

"cAMP-Phosphodiesterase PDE 4D as a Target for Colon Cancer Therapy"

Abstract: Type 4 cyclic nucleotide phosphodiesterases (PDE4s) comprise a family of isoenzymes that hydrolyze and inactivate the second messenger cAMP. Recent studies have shown that treatment with non-selective PDE4 inhibitors impairs cancer cell proliferation and migration, tumor growth and angiogenesis in various types of cancers; suggesting that PDE4s represent a potential target for the development of novel cancer therapeutics. However, non-selective PDE4 inhibitors induce a number of side effects, including nausea, emesis and diarrhea that limit their clinical utility. The PDE4 family comprises four subtypes/genes, PDE4A to D. As each plays unique and non-overlapping physiological and pathophysiological roles in the body, targeting individual PDE4 subtypes can serve to separate the therapeutic benefits from the side effects of non-selective PDE4 inhibitors. To this end, we explored the role of PDE4s in five human colon cancer cell lines. Treatment with non-selective PDE4 inhibitors ablated the chief portion of total cAMP hydrolytic activity in extracts prepared from all five cell lines, suggesting that PDE4s are the main cAMP-PDE expressed in colon cancer cells. Treatment with non-selective PDE4 inhibitors reduced the viability and motility of colon cancer cells in culture, confirming the potential of PDE4 as a therapeutic target. Western blotting and immunoprecipitation with subtype-selective antibodies revealed that PDE4 activity and protein in colon cancer cells is largely due to PDE4D, with none of the other PDE4 subtypes (PDE4A-C) being expressed in four of the five cell lines. As these cells exclusively express PDE4D, then the effect of non-selective PDE4 inhibitors on cell viability/motility must necessarily have been mediated via inhibition of PDE4D. We thus propose PDE4D as the most promising target for development of a therapeutic and will test this hypothesis by: 1. assessing the efficacy of 698C4, a novel PDE4D-selective inhibitor identified by high-throughput screening, on cancer cell viability and invasion, 2. identifying the downstream targets of PDE4D, and 3. assessing the anti-tumor activity of PDE4 inhibition in a mouse graft model. Ultimately, we hope to show that selective inhibition of PDE4D retains the cancer therapeutic benefits, but exhibits an improved safety profile, compared to the non-selective PDE4 inhibitors available to date.


▼   2016 Awardees
Dr. John McCreadie

Dr. John McCreadie
Professor, Department of Biology
College of Arts and Sciences

Measuring Real-Time Changes in Aquatic Ecosystems Using Environmental and Biologically Collected DNA


Dr. Alison Robertson

Dr. Alison Robertson, Co-PI
Research Assistant Professor, Department of Marine Sciences
College of Arts and Sciences

High Throughput Next Generation CometChip Platform for Assessment of Fish and Human Genome Damage Following Exposure to Harmful Algal Toxins


Dr. Robert Sobol

Dr. Robert Sobol, Co-PI
Professor, Oncologic Sciences
Mitchell Cancer Institute

High Throughput Next Generation CometChip Platform for Assessment of Fish and Human Genome Damage Following Exposure to Harmful Algal Toxins


Dr. David Weber

Dr. David Weber
Associate Professor, Department of Physiology and Cell Biology
College of Medicine

Endothelial Calcium Dynamics in Low-Flow Mediated Vascular Remodeling


Dr. Christy West

Dr. Christy West
Assistant Professor, Department of Chemical and Biomolecular Engineering
College of Engineering

Solar Water Splitting using Metal-Decorated Titania


▼   2015 Awardees
Dr. Natalie Bauer

Dr. Natalie Bauer
Assistant Professor, Pharmacology
College of Medicine

Biologically Targeted Drug Delivery to the Pulmonary Airways and Pulmonary Circulation


Dr. Alex Beebe

Dr. Alex Beebe
Assistant Professor, Department of Earth Sciences
College of Arts and Sciences

Characterization of Submarine Groundwater Discharge to Mobile Bay


Dr. Joe Currier

Dr. Joseph Currier
Assistant Professor, Psychology Department
College of Arts and Sciences

From Boots to Books: A Longitudinal Study of Returning Veterans' Success in Transitioning to College and Willingness to Seek Help


no photo available

Dr. Padmamalini Thulasiraman
Assistant Professor, Biomedical Sciences
College of Allied Health

Curcumin: A Therapeutic Initiative for Retinoic Acid-Resistant Triple Negative Breast Cancer


Dr. Saami Yazdani

Dr. Saami Yazdani
Assistant Professor, Mechanical Engineering
College of Engineering

A Novel Drug Coated Balloon to Treat Peripheral Disease


▼   2014 Awardees
Dr. Robert Barrington

Dr. Robert Barrington
Department of Microbiology and Immunology
College of Medicine

Tracking influenza virus-mediated immune responses in the lung


Dr. Grant Glover

Dr. Grant Glover
Department of Chemical and Biomolecular Engineering
College of Engineering

Modification of Fibers Using Reactive Dye Chemistry


Dr. Lawrence Leclaire

Dr. Lawrence LeClaire
Department of Biochemistry
College of Medicine

Invasive Aspergillosis and the Actin Cytoskeleton: Pathways for Targeting the "Achilles' Heel of Fungal Growth"


Dr. Ryan Littlefield

Dr. Ryan Littlefield 
Assistant Professor, Department of Biology
College of Arts and Sciences

Investigating the role of myosin on actin filament length regulation in C. elegans